What drives the binding of a protein to DNA ?

Non-covalent interactions!

But: Non-covalent interactions can occur between macromolecule and water/ions just as well.

Water molecules (red) at DNA

McDermott ACS Centr. Sci., 2017 DOI: 10.1021/acscentsci.7b00100

Regions of high Na+ (yellow) density

Ponomarev, PNAS 2004, DOI: 10.1073/pnas.0406435101

What drives the folding of a protein?

Protein folding as seen in molecular dynamics simulations of the villin protein headpiece (~10 µs time scale)

Peter L. Freddolino and Klaus Schulten. *Biophysical Journal*, 97:2338-2347, 2009

Intrinsically disordered protein regions (IDRs) can mediate macromolecular interactions

Specific interactions with IDR

Induced folding interactions

Increasing the kinetic rate for forming a multi-subunit complex

Rippe & Papantonis 2022 Curr Opin Cell Biol

- 25–30% of eukaryotic proteins are predicted to be mostly disordered
- Half of all eukaryotic proteins have long regions (<50 aa) of disorder

Uversky 2021 Ann Rev Biophys 4240

CHARLES TANFORD

Vol. 84

[CONTRIBUTION FROM THE DEPARTMENT OF BIOCHEMISTRY, DUKE UNIVERSITY, MEDICAL CENTER, DURHAM, NORTH CAROLINA]

Contribution of Hydrophobic Interactions to the Stability of the Globular Conformation of Proteins

By CHARLES TANFORD RECEIVED APRIL 9, 1962

Tanford, C. J Am Chem Soc 84, 4240–4247 (1962).

Calculating entropy: how probable or disordered is the final state?

Entropy provides that measure (Boltzmann)...

Number of microscopic ways in which a particular outcome (macroscopic state) can be attained

Criterion for Spontaneity:

For Avogadro number's of molecules...

Therefore: the most probable outcome maximizes entropy of <u>isolated systems</u>

 $\Delta S > 0$ (spontaneous) $\Delta S < 0$ (non-spontaneous)

Unfavorable conformation entropy for protein folding

for the folded state: ~ 1 conformation

$$S_{\text{folded}} = R \ln(1) = 0$$

for the unfolded state: x is the number of flexible points per residue and z is the number or possible orientations of equal energy at each point.

$$S_{\text{unfolded}} = R \ln(z^x)$$

Estimating the unfavorable conformational entropy for protein folding

$$S_{\text{conf}} = R \ln(z^{x})$$
 $\Delta S_{\text{fold}} = R \ln\left(\frac{W_{\text{unfolded}}}{W_{\text{folded}}}\right)$

Tanford 1962: For three flexible positions (ϕ , ψ , side chain) with two possible orientations each we have 2³ conformations per residue:

 $\Delta S_{fold} = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot \ln(\frac{1}{8}) = 17.3 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \text{ or "entropy units" (e.u.).}$

at 25 C: $-T\Delta S = 1.2$ kcal/mol or 5.2 kJ/mol

Hydrogen bonding of liquid water

Hydrogen bonding of liquid water

The hydrophobic effect drives protein-protein and protein-DNA/RNA interactions in water

- Minimization of non-polar/water surface area leads to stability
- Complex mixture of physical properties
- Entropic contribution most significant
- Water must form a "cage" structure around non-polar surfaces

Measure solubility of amino acid in ethanol (= inside the folded protein) and in water (= unfolded state or at the protein surface)

partition coefficient $K_{\rm D} = \frac{\text{solubility} (Alanin_{\rm EtOH})}{\text{solubility} (Alanin_{\rm H_2O})}$

Calculate the free energy from transferring an amino acid from water to ethanol

$$\Delta G_{\rm tr} = -RT \ln \left(\frac{N_{\rm EtOH}}{N_{\rm H_2O}} \right) = -RT \ln (K_{\rm D})$$

Free amino acids carry a positive and a negative charge that is not present in the peptide chain

 α amino acids because of the α carboxylic and α amino groups pK₁ and pK₂ respectively pK_R is for R group pK's

 $pK_1 \approx 2.2$ while $pK_2 \approx 9.4$

In the physiological pH range, both carboxylic and amino groups are completely ionized

TABLE I^a

FREE ENERGY CHANGE IN CALORIES PER MOLE FOR TRANS-FER FROM ETHANOL TO WATER AT 25°

	ΔF_{t}	$\Delta f_{\rm t}$, side chain contribution
	Non nolon side ab	sine chain contribution
	Non-polar side ch	ams
Glycine	-4630	0
Alanine	-3900	+730
Valine	-2940	+1690
Leucine	-2210	+2420
Isoleucine	-1690^{b}	$+2970^{b}$
Phenylalanine	-1980	+2650
Proline	-2060°	$+2600^{c}$
	Other side chair	15
Methionine	-3330	+1300
Tyrosine	930 ^d	$+2870^{d}$
Threonine	-4190	+ 440
Serine	-4590	+ 40
Asparagine	-4640	- 10
Glutamine	-4730	- 100
Aspartic acid ^e	-4090	+ 540 uncharged
Glutamic acide	-4080	+ 550 uncharged

Tanford 1962

Burying a charged amino acid in the interior (Born expression)

$$W_{\rm B} = \frac{q^2}{4\pi\varepsilon_0 r} \left(\frac{1}{\varepsilon_1} - \frac{1}{\varepsilon_2}\right)$$

 W_B is the free energy of transfer in moving a charged body from a region with a relative dielectric constant ϵ_2 to a medium with a with a relative dielectric constant ϵ_1 . The parameter r is the radius of the charge.

q (charge of an electron) = 1.60 x 10⁻¹⁹ C dielectric constant in vacuum ε_0 = 8.85 x 10⁻¹² C² J⁻¹ m⁻¹ *r* is ionic radius, with is typically 1-2 Å For ε_1 = 2-8 and ε_2 = 80 (H₂O) => ΔG_{tr} = +30 to 50 kcal/mol

Sharp, K.A. and Honig, B. (1990) Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem, 19, 301-332.

Tanford 1962

TABLE III

CONTRIBUTION OF THE MOST IMPORTANT HYDROPHOBIC INTERACTIONS TO THE FREE ENERGY OF UNFOLDING AT 25°

Δf_u per		Number present in			
Side chain	side chain, cal./mole	myo- globin ^a	β-lacto- globulin ^b	ribo- nuclease ^e	
Tryptophan	3000	2	2	0	
Isoleucine	2970	9	10	3	
Tyrosine	2870	3	4	6	
Phenylalanine	2650	6	4	3	
Proline	2600	4	8	4	
Leucine	2420	18	22	2	
Valine	1690	8	10	9	
Lysine	1500	19	15	10	
Methionine	1300	2	4	4	
Alanine	730	17	14	11	
Arginine	730	4	3	4	
Threonine	440	5	8	10	
Total number	of residues	153	162	124	
$-T\Delta S_{\text{conf}}$, kcs	al./mole	- 184	- 194	- 149	
$\Sigma \Delta f_u$, kcal./m	ole	+173	+192	+100	

conformation entropy hydrophobic effect

The hydrophobic effect drives protein-protein and protein-DNA interactions in water

•	Minimization	of	non-po	lar/water	surface	area
---	--------------	----	--------	-----------	---------	------

- Entropic contribution most significant
- Water"cage" around non-polar surfaces

Side-chain of amino acid residue	Anp (Ų)	Apol (Ų)
Asp	48	58
Gln	53	91
Glu	61	77
Lys	119	48
Ala	67	
Val	117	_
Leu	137	
Ile	140	_

J. Mol. Biol. (1990) 213, 375-384

Protein folding minimizes water accessible unpolar surfaces

Entropy change from the number of states

$$\Delta S_{\text{fold}} = R \ln \left(\frac{W_{\text{unfolded}}}{W_{\text{folded}}} \right)$$

Folded: ~1 conformation Unfolded: ~2³ states (per aa)

 $\Delta S_{\text{fold}} (2^3 \text{ states}) = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot \ln(\frac{1}{8})$ = 17.3 J \cdot mol}^{-1} \cdot \text{K}^{-1} \text{ or "entropy units" (e.u.).}

-T(25 °C) x Δ S =1.2 kcal/mol or 5.2 kJ/mol

"Burying" an unpolar side chain: Leu = -2.4 kcal/mol, Val = -1.7 kcal/mol "Burying" a negative/positive charge: ΔG_{tr} = +30 to 50 kcal/mol Making interactions between proteins and double-stranded DNA

B-DNA – major & minor grooves

Garrett & Grisham: Biochemistry, 2/e Figure 12.11

G & G 12.11

Saunders College Publishing

B-DNA: A right Handed double helix

Pitch 34 Å 10.4 bp/turn

Groove Major Groove

Protein-DNA interaction

- Sequence independent
 - may interact with the negatively charged sugarphosphate backbone
- Sequence dependent
 - need to recognize the bases in the double-helical structure (don't have access to the atoms involved in base pair H-bonds)

Histone octamer - Nucleosome

Nucleosome crystal structure

Histones in the nucleosome

- Histone proteins are Lys & Arg rich and highly positiviely charge ("basic")
- 2 copies of H2A-H2B dimer and (H3-4)2 tetramer form octamers
- Basic histones interact with the negatively charged DNA phosphates
- The DNA is wrapped around protein core in ~1.7 turns

Specific binding of proteins to DNA

Which groove?

- H-bond donors and aceptors different in major groove for 2 types of base pair but very similar in the minor groove
- Minor groove too small to accommodate large protein probe

Which groove?

Figure 7–8. Molecular Biology of the Cell, 4th Edition.

- H-bond donors and aceptors different in major groove for 2 types of base pair but very similar in the minor groove
- Minor groove too small to accommodate large protein probe

Which groove?

- H-bond donors and aceptors different in major groove for 2 types of base pair but very similar in the minor groove
- Minor groove too small to accommodate large protein probe

Hydrogen bonding between aspargaine and adenine

Figure 7–12. Molecular Biology of the Cell, 4th Edition.

α Helices and DNA - a perfect fit

- DNA-binding proteins often have an a-helical segments that fit directly into the major groove of B-form DNA
- Diameter of helix is 1.2 nm (12 Angstroms)
 - Major groove of DNA is about 1.2 nm wide and 0.6 to 0.8 nm deep
- Proteins can recognize specific sites (sequences) in DNA

The helix-turn-helix motif

- Generally bind as dimers to dyad-symmetric sites on DNA
- All contain two alpha helices separated by a loop with a beta turn
- The C-terminal helix fits in major groove of DNA
- N-terminal helix stabilised by hydrophobic interactions with Cterminal helix

The helix-turn-helix motif: homeodomain transcription factor

Figure 7–16. Molecular Biology of the Cell, 4th Edition.

Protein dimer binding to a symmetric DNA site

Figure 7–15. Molecular Biology of the Cell, 4th Edition.

Strategies for transcription regulation in bacteria

Model for the complex of CAP and Lacl at the lac operator

CAP

low glucose and low lactose
=> both CAP and Lacl bound
=> repression

Lac repressor bound to operator sites O1 and O3

Turning a gene on/off by binding of an activator/repressor

"On" and "off" states of the E. coli lac repressor

The hinge region (50-62 in red) of Lac-DBD is folded only in the specific complex with DNA

free lac DBD

nonspecific complex, straight DNA

specific complex, curved DNA

- folding of hinge region with specific contacts in minor groove
- specific interactions major groove
- less electrostatic interactions
- curvature of DNA

Specific (left) and nonspecific (right) protein-DNA contacts of Lac-DBD repressor with DNA

Features of protein DNA interactions

- Unspecific electrostatic interactions of positively charge Arg and Lys with negatively charged sugar-phosphate DNA backbone
- Sequence recognition by non-covalent contacts between protein residues and bases
- Most contacts are in the major groove of DNA
- No simple recognition code between amino acid and base pair
- Frequently dimers that recognize palindromic sequence motifs
- 80% of regulatory proteins can be assigned to one of three classes:
 - -helix-turn-helix (HTH)
 - -zinc finger (Zn-finger)
 - -leucine zipper (bZIP)
 - -helix-loop-helix (HLH)
- In addition to DNA-binding domains, these proteins often possess other domains that interact with other proteins ("activation domain")